Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38559023

RESUMEN

During endosomal recycling, Sorting Nexin 17 (SNX17) facilitates the transport of numerous membrane cargo proteins by tethering them to the Retriever complex. Despite its importance, the mechanisms underlying this interaction have remained elusive. Here, we report the structure of the Retriever-SNX17 complex determined using cryogenic electron microscopy (cryo-EM). Our structure reveals that the C-terminal tail of SNX17 engages with a highly conserved interface between the VPS35L and VPS26C subunits of Retriever. Through comprehensive biochemical, cellular, and proteomic analyses, we demonstrate that disrupting this interface impairs the Retriever-SNX17 interaction, subsequently affecting the recycling of SNX17-dependent cargos and altering the composition of the plasma membrane proteome. Intriguingly, we find that the SNX17-binding pocket on Retriever can be utilized by other ligands that share a consensus acidic C-terminal tail motif. By showing how SNX17 is linked to Retriever, our findings uncover a fundamental mechanism underlying endosomal trafficking of critical cargo proteins and reveal a mechanism by which Retriever can engage with other regulatory factors.

2.
Nat Commun ; 15(1): 2609, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521788

RESUMEN

Insulin receptor (IR) controls growth and metabolism. Insulin-like growth factor 2 (IGF2) has different binding properties on two IR isoforms, mimicking insulin's function. However, the molecular mechanism underlying IGF2-induced IR activation remains unclear. Here, we present cryo-EM structures of full-length human long isoform IR (IR-B) in both the inactive and IGF2-bound active states, and short isoform IR (IR-A) in the IGF2-bound active state. Under saturated IGF2 concentrations, both the IR-A and IR-B adopt predominantly asymmetric conformations with two or three IGF2s bound at site-1 and site-2, which differs from that insulin saturated IR forms an exclusively T-shaped symmetric conformation. IGF2 exhibits a relatively weak binding to IR site-2 compared to insulin, making it less potent in promoting full IR activation. Cell-based experiments validated the functional importance of IGF2 binding to two distinct binding sites in optimal IR signaling and trafficking. In the inactive state, the C-terminus of α-CT of IR-B contacts FnIII-2 domain of the same protomer, hindering its threading into the C-loop of IGF2, thus reducing the association rate of IGF2 with IR-B. Collectively, our studies demonstrate the activation mechanism of IR by IGF2 and reveal the molecular basis underlying the different affinity of IGF2 to IR-A and IR-B.


Asunto(s)
Factor II del Crecimiento Similar a la Insulina , Receptor de Insulina , Humanos , Insulina/metabolismo , Factor II del Crecimiento Similar a la Insulina/metabolismo , Isoformas de Proteínas/metabolismo , Receptor de Insulina/metabolismo
3.
Curr Opin Struct Biol ; 84: 102767, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38183862

RESUMEN

STING is a critical adaptor protein in the cGAS-mediated DNA-sensing innate immune pathway. Binding of the second messenger cGAMP generated by cGAS to STING induces the high-order oligomerization and activation of the STING dimer. STING is a promising target for diseases associated with the cGAS/STING pathway such as cancer and autoimmune diseases. Recent applications of cryo-EM to STING have led to exciting progress in the understanding of its regulatory mechanism. Cryo-EM structures of STING bound to either cGAMP mimetics or novel small molecule ligands not only revealed the action mechanisms of these ligands but also suggested new ways to modulate the activity of STING for therapeutic purposes. Some of these recent studies are highlighted here.


Asunto(s)
Nucleotidiltransferasas , Transducción de Señal , Transducción de Señal/fisiología , Microscopía por Crioelectrón , Nucleotidiltransferasas/metabolismo , ADN/metabolismo , Desarrollo de Medicamentos , Inmunidad Innata
5.
Nat Chem Biol ; 20(3): 365-372, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37828400

RESUMEN

Stimulator of interferon genes (STING) is a dimeric transmembrane adapter protein that plays a key role in the human innate immune response to infection and has been therapeutically exploited for its antitumor activity. The activation of STING requires its high-order oligomerization, which could be induced by binding of the endogenous ligand, cGAMP, to the cytosolic ligand-binding domain. Here we report the discovery through functional screens of a class of compounds, named NVS-STGs, that activate human STING. Our cryo-EM structures show that NVS-STG2 induces the high-order oligomerization of human STING by binding to a pocket between the transmembrane domains of the neighboring STING dimers, effectively acting as a molecular glue. Our functional assays showed that NVS-STG2 could elicit potent STING-mediated immune responses in cells and antitumor activities in animal models.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas de la Membrana , Animales , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Bioensayo , Citosol , Inmunidad Innata , Ligandos , Proteínas de la Membrana/metabolismo
6.
Sci Adv ; 9(37): eadi1057, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37713485

RESUMEN

Insulin is a hormone responsible for maintaining normal glucose levels by activating insulin receptor (IR) and is the primary treatment for diabetes. However, insulin is prone to unfolding and forming cross-ß fibers. Fibrillation complicates insulin storage and therapeutic application. Molecular details of insulin fibrillation remain unclear, hindering efforts to prevent fibrillation process. Here, we characterized insulin fibrils using cryo-electron microscopy (cryo-EM), showing multiple forms that contain one or more of the protofilaments containing both the A and B chains of insulin linked by disulfide bonds. We solved the cryo-EM structure of one of the fibril forms composed of two protofilaments at 3.2-Å resolution, which reveals both the ß sheet conformation of the protofilament and the packing interaction between them that underlie the fibrillation. On the basis of this structure, we designed several insulin mutants that display reduced fibrillation while maintaining native IR signaling activity. These designed insulin analogs may be developed into more effective therapeutics for type 1 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1 , Insulina , Agregado de Proteínas , Humanos , Microscopía por Crioelectrón , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Insulina/química , Insulina/fisiología , Agregado de Proteínas/fisiología
7.
Mol Cell ; 83(16): 2856-2871.e8, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37536339

RESUMEN

Cohesin and CCCTC-binding factor (CTCF) are key regulatory proteins of three-dimensional (3D) genome organization. Cohesin extrudes DNA loops that are anchored by CTCF in a polar orientation. Here, we present direct evidence that CTCF binding polarity controls cohesin-mediated DNA looping. Using single-molecule imaging, we demonstrate that a critical N-terminal motif of CTCF blocks cohesin translocation and DNA looping. The cryo-EM structure of the cohesin-CTCF complex reveals that this CTCF motif ahead of zinc fingers can only reach its binding site on the STAG1 cohesin subunit when the N terminus of CTCF faces cohesin. Remarkably, a C-terminally oriented CTCF accelerates DNA compaction by cohesin. DNA-bound Cas9 and Cas12a ribonucleoproteins are also polar cohesin barriers, indicating that stalling may be intrinsic to cohesin itself. Finally, we show that RNA-DNA hybrids (R-loops) block cohesin-mediated DNA compaction in vitro and are enriched with cohesin subunits in vivo, likely forming TAD boundaries.


Asunto(s)
Cromatina , Estructuras R-Loop , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN/genética , ADN/metabolismo , Cohesinas
9.
Proc Natl Acad Sci U S A ; 120(23): e2300453120, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37252960

RESUMEN

MuSK is a receptor tyrosine kinase (RTK) that plays essential roles in the formation and maintenance of the neuromuscular junction. Distinct from most members of RTK family, MuSK activation requires not only its cognate ligand agrin but also its coreceptors LRP4. However, how agrin and LRP4 coactivate MuSK remains unclear. Here, we report the cryo-EM structure of the extracellular ternary complex of agrin/LRP4/MuSK in a stoichiometry of 1:1:1. This structure reveals that arc-shaped LRP4 simultaneously recruits both agrin and MuSK to its central cavity, thereby promoting a direct interaction between agrin and MuSK. Our cryo-EM analyses therefore uncover the assembly mechanism of agrin/LRP4/MuSK signaling complex and reveal how MuSK receptor is activated by concurrent binding of agrin and LRP4.


Asunto(s)
Agrina , Receptores Colinérgicos , Receptores Colinérgicos/metabolismo , Agrina/química , Agrina/metabolismo , Proteínas Relacionadas con Receptor de LDL/química , Transducción de Señal , Unión Neuromuscular/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo
10.
Eur Neurol ; 86(4): 242-249, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37068470

RESUMEN

INTRODUCTION: Respiratory dysfunction in patients with Parkinson's disease (PD) could present in the early stage and worsen in the late stages. These changes could be a factor affecting the ability of daily living and quality of life of patients with PD. The primary objective of this study was to assess the respiratory function and its association with motor function in patients with different stages of PD. METHODS: This was a cross-sectional study conducted at the Huashan Hospital of Fudan University in Shanghai, China. The study included 65 patients diagnosed with PD (the Hoehn and Yahr scale between 1 and 4) and 20 healthy individuals of similar age, gender, weight, and height. The ventilatory function was assessed using the spirometry. Motor function was evaluated using subscale III of the United Parkinson's disease rating scale (UPDRS-III). After confirming the normality of data distribution, we performed one-way ANOVA with a Tukey's post hoc test. RESULTS: Compared with the healthy individuals, there was no statistical significance in forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), and forced expiratory volume in 1 s/forced vital capacity (FEV1/FVC) in the H&Y 1 group and H&Y 2 group (p > 0.05) but reduced peak expiratory flow (PEF) in the H&Y 2 group (p = 0.002). Reduced FVC, FEV1, and PEF was seen in the H&Y 3 group (p = 0.002, p = 0.001, and p = 0.0001, respectively). Reduced FVC, FEV1, PEF, and FEF25-75% was seen in the H&Y 4 group (p = 0.001, p = 0.0001, p = 0.0001, and p = 0.025, respectively). The correlation analysis revealed that there was a significant negative correlation between FVC and UPDRS-III scores (r = -0.248, p = 0.046), disease duration (r = -0.276, p = 0.026), H&Y scale (r = -0.415, p = 0.001). FEV1 was negatively correlated with UPDRS-III scores (r = -0.277, p = 0.025), disease duration (r = -0.291, p = 0.019), H&Y scale (r = -0.434, p = 0.0001). FEF25-75% was negatively correlated with disease duration (r = -0.247, p = 0.047), H&Y scale (r = -0.278, p = 0.025). CONCLUSION: Our findings revealed that respiratory impairment is present in moderate and advanced PD patients, and directly related to the severity of the disease. It is important to conduct respiratory function test in the clinical practice.


Asunto(s)
Enfermedad de Parkinson , Calidad de Vida , Humanos , Enfermedad de Parkinson/complicaciones , Estudios Transversales , China , Pruebas de Función Respiratoria
11.
Nat Struct Mol Biol ; 30(5): 661-669, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37055497

RESUMEN

The insulin receptor (IR) family is a subfamily of receptor tyrosine kinases that controls metabolic homeostasis and cell growth. Distinct from IR and insulin-like growth factor 1 receptor, whose activation requires ligand binding, insulin receptor-related receptor (IRR)-the third member of the IR family-is activated by alkaline pH. However, the molecular mechanism underlying alkaline pH-induced IRR activation remains unclear. Here, we present cryo-EM structures of human IRR in both neutral pH inactive and alkaline pH active states. Combined with mutagenesis and cellular assays, we show that, upon pH increase, electrostatic repulsion of the pH-sensitive motifs of IRR disrupts its autoinhibited state and promotes a scissor-like rotation between two protomers, leading to a T-shaped active conformation. Together, our study reveals an unprecedented alkaline pH-dependent activation mechanism of IRR, opening up opportunities to understand the structure-function relationship of this important receptor.


Asunto(s)
Insulina , Receptor de Insulina , Humanos , Receptor de Insulina/química , Concentración de Iones de Hidrógeno , Insulina/química
12.
Nature ; 616(7956): 378-383, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37045917

RESUMEN

The evolution of new traits enables expansion into new ecological and behavioural niches. Nonetheless, demonstrated connections between divergence in protein structure, function and lineage-specific behaviours remain rare. Here we show that both octopus and squid use cephalopod-specific chemotactile receptors (CRs) to sense their respective marine environments, but structural adaptations in these receptors support the sensation of specific molecules suited to distinct physiological roles. We find that squid express ancient CRs that more closely resemble related nicotinic acetylcholine receptors, whereas octopuses exhibit a more recent expansion in CRs consistent with their elaborated 'taste by touch' sensory system. Using a combination of genetic profiling, physiology and behavioural analyses, we identify the founding member of squid CRs that detects soluble bitter molecules that are relevant in ambush predation. We present the cryo-electron microscopy structure of a squid CR and compare this with octopus CRs1 and nicotinic receptors2. These analyses demonstrate an evolutionary transition from an ancestral aromatic 'cage' that coordinates soluble neurotransmitters or tastants to a more recent octopus CR hydrophobic binding pocket that traps insoluble molecules to mediate contact-dependent chemosensation. Thus, our study provides a foundation for understanding how adaptation of protein structure drives the diversification of organismal traits and behaviour.


Asunto(s)
Conducta Animal , Decapodiformes , Octopodiformes , Receptores Nicotínicos , Células Receptoras Sensoriales , Gusto , Tacto , Animales , Conducta Animal/fisiología , Sitios de Unión , Microscopía por Crioelectrón , Decapodiformes/química , Decapodiformes/fisiología , Decapodiformes/ultraestructura , Evolución Molecular , Interacciones Hidrofóbicas e Hidrofílicas , Neurotransmisores/metabolismo , Octopodiformes/química , Octopodiformes/fisiología , Octopodiformes/ultraestructura , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/ultraestructura , Gusto/fisiología , Tacto/fisiología , Células Receptoras Sensoriales/química , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/ultraestructura
13.
Sci Adv ; 9(14): eadf5583, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37018411

RESUMEN

The FAM46 (also known as TENT5) proteins are noncanonical poly(A) polymerases (PAPs) implicated in regulating RNA stability. The regulatory mechanisms of FAM46 are poorly understood. Here, we report that the nuclear protein BCCIPα, but not the alternatively spliced isoform BCCIPß, binds FAM46 and inhibits their PAP activity. Unexpectedly, our structures of the FAM46A/BCCIPα and FAM46C/BCCIPα complexes show that, despite sharing most of the sequence and differing only at the C-terminal portion, BCCIPα adopts a unique structure completely different from BCCIPß. The distinct C-terminal segment of BCCIPα supports the adoption of the unique fold but does not directly interact with FAM46. The ß sheets in BCCIPα and FAM46 pack side by side to form an extended ß sheet. A helix-loop-helix segment in BCCIPα inserts into the active site cleft of FAM46, thereby inhibiting the PAP activity. Our results together show that the unique fold of BCCIPα underlies its interaction with and functional regulation of FAM46.


Asunto(s)
Proteínas Nucleares , Dominio Catalítico , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/metabolismo , Polinucleotido Adenililtransferasa/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/metabolismo
14.
Annu Rev Biochem ; 92: 247-272, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37001136

RESUMEN

The insulin receptor (IR) is a type II receptor tyrosine kinase that plays essential roles in metabolism, growth, and proliferation. Dysregulation of IR signaling is linked to many human diseases, such as diabetes and cancers. The resolution revolution in cryo-electron microscopy has led to the determination of several structures of IR with different numbers of bound insulin molecules in recent years, which have tremendously improved our understanding of how IR is activated by insulin. Here, we review the insulin-induced activation mechanism of IR, including (a) the detailed binding modes and functions of insulin at site 1 and site 2 and (b) the insulin-induced structural transitions that are required for IR activation. We highlight several other key aspects of the activation and regulation of IR signaling and discuss the remaining gaps in our understanding of the IR activation mechanism and potential avenues of future research.


Asunto(s)
Insulina , Receptor de Insulina , Humanos , Receptor de Insulina/genética , Receptor de Insulina/química , Receptor de Insulina/metabolismo , Microscopía por Crioelectrón , Insulina/química , Insulina/metabolismo , Transducción de Señal , Proteínas Tirosina Quinasas Receptoras/metabolismo , Fosforilación
16.
World J Pediatr Surg ; 5(4): e000425, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36474729

RESUMEN

Objective: Previous studies have shown that ex utero intrapartum therapy (EXIT) is safe and feasible for newborns with congenital diaphragmatic hernia (CDH). This study reports our experience with EXIT in fetuses with CDH in an attempt to explore the efficacy of EXIT on the survival rate of this population. Methods: A retrospective analysis of the clinical data of 116 children with CDH was conducted. The children were assigned to EXIT and non-EXIT groups. Propensity score matching (PSM) toward clinical data was performed, and the clinical characteristics and outcomes were compared. Taking survival at discharge as the main outcome, logistic regression analysis was carried out to explore the efficacy of EXIT on survival. Results: During the study period, 30 of 116 children received EXIT. After PSM, the survival rates of the EXIT group and the non-EXIT group were 82.76% (24/29) and 48.28% (14/29), respectively (p=0.006). EXIT (OR=0.083, 95% CI=0.013to 0.525, p=0.008), liver herniation (OR=16.955, 95% CI=2.342 to 122.767, p=0.005), and gestational age at diagnosis (OR=0.662, 95% CI=0.497 to 0.881, p=0.005) were independent mortality-related risk factors of all children with CDH. Ninety-nine of 116 children underwent surgery. After PSM, the postoperative survival rates of the EXIT group and non-EXIT group were 84.6% (22/26) and 76.9% (20/26), respectively (p=0.754). Liver herniation (OR=10.451, 95% CI=1.641 to 66.544, p=0.013) and gestational age at diagnosis (OR=0.736, 95% CI=0.577 to 0.938, p=0.013) were independent mortality-related risk factors of children after surgery. Conclusion: EXIT can be performed safely for selected prenatally diagnosed CDH neonates with potentially better survival and does not cause more maternal complications compared with traditional cesarean section.

17.
Elife ; 112022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36413010

RESUMEN

The insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF1R) control metabolic homeostasis and cell growth and proliferation. The IR and IGF1R form similar disulfide bonds linked homodimers in the apo-state; however, their ligand binding properties and the structures in the active state differ substantially. It has been proposed that the disulfide-linked C-terminal segment of α-chain (αCTs) of the IR and IGF1R control the cooperativity of ligand binding and regulate the receptor activation. Nevertheless, the molecular basis for the roles of disulfide-linked αCTs in IR and IGF1R activation are still unclear. Here, we report the cryo-EM structures of full-length mouse IGF1R/IGF1 and IR/insulin complexes with modified αCTs that have increased flexibility. Unlike the Γ-shaped asymmetric IGF1R dimer with a single IGF1 bound, the IGF1R with the enhanced flexibility of αCTs can form a T-shaped symmetric dimer with two IGF1s bound. Meanwhile, the IR with non-covalently linked αCTs predominantly adopts an asymmetric conformation with four insulins bound, which is distinct from the T-shaped symmetric IR. Using cell-based experiments, we further showed that both IGF1R and IR with the modified αCTs cannot activate the downstream signaling potently. Collectively, our studies demonstrate that the certain structural rigidity of disulfide-linked αCTs is critical for optimal IR and IGF1R signaling activation.


Asunto(s)
Receptor IGF Tipo 1 , Receptor de Insulina , Animales , Ratones , Disulfuros/química , Ligandos , Receptor de Insulina/química , Receptor IGF Tipo 1/química , Microscopía por Crioelectrón , Multimerización de Proteína
18.
Front Mol Neurosci ; 15: 978191, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36277485

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive degeneration of midbrain dopaminergic neurons. The miR-29s family, including miR-29a and miR-29b1 as well as miR-29b2 and miR-29c, are implicated in aging, metabolism, neuronal survival, and neurological disorders. In this study, the roles of miR-29a/b1 in aging and PD were investigated. miR-29a/b1 knockout mice (named as 29a KO hereafter) and their wild-type (WT) controls were used to analyze aging-related phenotypes. After challenged with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), dopaminergic injuries, glial activation, and mouse behaviors were evaluated. Primary glial cells were further cultured to explore the underlying mechanisms. Additionally, the levels of miR-29s in the cerebrospinal fluid (CSF) of PD patients (n = 18) and healthy subjects (n = 17) were quantified. 29a KO mice showed dramatic weight loss, kyphosis, and along with increased and deepened wrinkles in skins, when compared with WT mice. Moreover, both abdominal and brown adipose tissues reduced in 29a KO mice, compared to their WT counterpart. However, in MPTP-induced PD mouse model, the deficiency of miR-29a/b1 led to less severe damages of dopaminergic system and mitigated glial activation in the nigrostriatal pathway, and subsequently alleviated the motor impairments in 3-month-old mice. Eight-month-old mutant mice maintained such a resistance to MPTP intoxication. Mechanistically, the deficiency of miR-29a/b-1 promoted the expression of neurotrophic factors in 1-Methyl-4-phenylpyridinium (MPP+)-treated primary mixed glia and primary astrocytes. In lipopolysaccharide (LPS)-treated primary microglia, knockout of miR-29a/b-1 inhibited the expression of inflammatory factors, and promoted the expression of anti-inflammatory factors and neurotrophic factors. Knockout of miR-29a/b1 increased the activity of AMP-activated protein kinase (AMPK) and repressed NF-κB/p65 signaling in glial cells. Moreover, we found miR-29a level was increased in the CSF of patients with PD. Our results suggest that 29a KO mice display the peripheral premature senility. The combined effects of less activated glial cells might contribute to the mitigated inflammatory responses and elicit resistance to MPTP intoxication in miR-29a/b1 KO mice.

19.
Nat Commun ; 13(1): 5293, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36075933

RESUMEN

P2-type ATPase sodium-potassium pumps (Na+/K+-ATPases) are ion-transporting enzymes that use ATP to transport Na+ and K+ on opposite sides of the lipid bilayer against their electrochemical gradients to maintain ion concentration gradients across the membranes in all animal cells. Despite the available molecular architecture of the Na+/K+-ATPases, a complete molecular mechanism by which the Na+ and K+ ions access into and are released from the pump remains unknown. Here we report five cryo-electron microscopy (cryo-EM) structures of the human alpha3 Na+/K+-ATPase in its cytoplasmic side-open (E1), ATP-bound cytoplasmic side-open (E1•ATP), ADP-AlF4- trapped Na+-occluded (E1•P-ADP), BeF3- trapped exoplasmic side-open (E2P) and MgF42- trapped K+-occluded (E2•Pi) states. Our work reveals the atomically resolved structural detail of the cytoplasmic gating mechanism of the Na+/K+-ATPase.


Asunto(s)
ATPasa Intercambiadora de Sodio-Potasio , Sodio , Adenosina Difosfato , Adenosina Trifosfato , Animales , Microscopía por Crioelectrón , Humanos , Iones , Potasio/metabolismo , Sodio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
20.
Nat Commun ; 13(1): 5594, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36151101

RESUMEN

Insulin receptor (IR) signaling defects cause a variety of metabolic diseases including diabetes. Moreover, inherited mutations of the IR cause severe insulin resistance, leading to early morbidity and mortality with limited therapeutic options. A previously reported selective IR agonist without sequence homology to insulin, S597, activates IR and mimics insulin's action on glycemic control. To elucidate the mechanism of IR activation by S597, we determine cryo-EM structures of the mouse IR/S597 complex. Unlike the compact T-shaped active IR resulting from the binding of four insulins to two distinct sites, two S597 molecules induce and stabilize an extended T-shaped IR through the simultaneous binding to both the L1 domain of one protomer and the FnIII-1 domain of another. Importantly, S597 fully activates IR mutants that disrupt insulin binding or destabilize the insulin-induced compact T-shape, thus eliciting insulin-like signaling. S597 also selectively activates IR signaling among different tissues and triggers IR endocytosis in the liver. Overall, our structural and functional studies guide future efforts to develop insulin mimetics targeting insulin resistance caused by defects in insulin binding and stabilization of insulin-activated state of IR, demonstrating the potential of structure-based drug design for insulin-resistant diseases.


Asunto(s)
Resistencia a la Insulina , Receptor de Insulina , Animales , Insulina/metabolismo , Ratones , Péptidos/farmacología , Subunidades de Proteína , Receptor de Insulina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...